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THE SAFETY OF VERTICAL CAVING EQUIPMENT 

JOHN BOSLER* 
University of New South Wales Speleological Society 

Vertical caving techniques are now widely used in caving. However, vertical caving remains a poten
tially hazardous occupation, because of the relative absence of any back-up devices. The person who 
claims the perfectly safe vertical caving system can be built is, at best, using his terms loosely, at 
worst, woefully ignorant of the limitations of his equipment. The task of the designer of vertical 
caving equipment is to develop a system where the chances of failure are reduced to an acceptable 
level. Up to now the philosophy has been: "if it looks okay, give it a go". Unfortunately, intuition 
does not produce the safest system. It is time the design of vertical caving equipment was placed on 
a more scientzfic footing. This paper explains, in non-technical language, the principles governing 
the safety of vertical caving equipment. It describes the factors which determine the maximum 
forces which can occur, and provides guidelines for the design and testing of vertical caving equip
ment. 

Introduction 

Vertical caving techniques are becoming increasingly popular. Unfortunately, knowledge of the per
formance and safety of vertical caving systems (i.e., devices enabling vertical movement in caves) has 
not grown proportionately. 

The design and implementation of vertical caving systems has been accompanied by much woolly 
thinking. It is not unusual to hear that a certain vertical caving technique is "perfectly safe". Claims 
such as this are dangerously misleading. 

Perfect Safety 

Perfect safety in vertical caving is impossible. To use the old axiom, a vertical caving system is only 
as strong as its weakest link. 

For example, suppose you are abseiling on a single rope. The karabiner you are using may have an 
ultimate load capaCIty of 2000 kg, the whaletail a capacity of 4000 kg, the rope a capacity of 2200 
kg, and the webbing a capacity of 1400 kg. However, if the anchor for the rope has an ultimate load 
capacity of 250 kg, then it is the anchor that governs the load carrying capacity of the system as a 
whole - it is the weakest link. 

Using this concept, I'll explain why perfect safety is impossible. 
Suppose we had an infinite number of people and each person is abseiling using a rope tied off to 

a different rock projection. If we tested the ultimate strength of the rock projections we would 
obtain a distribution of strengths as shown in Fig. 1. 

All those rock projections with a strength less than the minimum safe strength (those in the 
hatched area) are capable of causing an accident. 

In order to make our rock projection "perfectly safe" we must eliminate the hatched area, i.e., 
avoid using all projections that fall within this zone. This is not easy. Some possible courses of 
action are: 
(i) We could test all projections with our body weight before abseiling off it. This won't help us 

much because the minimum safe strength required is much greater than one body weight, prob
ably at least four times one body weight. 

(ii) We could tie the rope off using two rock projections. This will modify our strength distribution 
graph as shown in Fig. 2. 

The hatched area has been reduced, but it still exists, i.e., accidents can still occur. 
The vertical caver is moving in a world of many unknowns. It is not possible for him to test every 

item of his equipment up to a minimum safe load capacity every time he is about to use it. Every 
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Fig. 1 Strength of rock ~rojections. Fig. 2 Strength of double tie-offs. 
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Fig. 3 Typical load vs. strain curve. 
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time he uses an item, its strength may be reduced by abrasion or chemical attack. 
The vertical caver must reconcile himself to the fact that he is playing a risk game, and approach 

his sport accordingly. 

Safety Factors 

Rather than ~r<:am about perfect safety, th.e designer of vertical caving equipment should direct his 
efforts t~ ~ttammg an acceptable level of safety. But, what is acceptable safety? 

TechmcIans love to talk about safety factors. A safety factor is a non-dimensional number 
obtained ~y dividing the ultimate strength of a device by the maximum load that you intend to put 
on the devIce. 

For example~ suppose we wanted to design a device to carry a maximum load of 100 kg. If we 
~anted the devIce to have a safety factor of 2, then we would design it to fail at not less than 200 
kg. For a safety factor of 3, it would need to fail at not less than 300 kg. 

The actU'al safety factor that we choose will depend upon: 

(i) the certainty with which the maximum working load can be determined; 
(ii) the consequences of the ultimate load carrying capacity being exceeded. 

As an illustration of the second point, consider a steel bridge, held together by a large number of 
bolts. If one bolt snaps then usually the load that was being carried by that bolt, will be distributed 
to the numerous bolts surrounding it, and the bridge will continue to stand. Contrast this with a 
caving situation where you are using just one bolt as a tie-off for your abseil rope. The consequences 
of the bolt failing in the latter case are obviously more disastrous. 

If the bridge engineer uses safety factors m the range 1.4 to 2.0, it is obvious that the caver 
should be using safety factors of at least 2.0. 

Forces in Vertical Caving 

The safety factor tells us by what factor to increase our maximum anticipated loads to obtain an 
ultimate load capacity. Hence, before we can design our equipment we need to have some idea of 
what our maximum anticipated loads are going to be. 

As an illustration I will outline two potentially dangerous situations that could arise in vertical 
caving. Both situations involve a caver weighing 70 kg (The technical calculations are contained in 
Appendix C.) 

Situation A: 

A caver is climbing a ladder. The belay rope is a number 3 nylon, and belaying is done by means of 
a ju~ar at the top of the pitch. The pitch, which is free-hanging, is in excess of 80 metres. Forty 
five metres from the top the climber stops for a rest and then starts climbing again. The belayer is 
inattentive and does not recommence taking in the belay rope. Thirty metres from the top the 
climber loses his grip and falls 15 m vertically before the slack in the belay rope is taken up. The 
maximum force in this fall will be 330 kg. 

Situation B: 

A caver is jumaring on Bluewater Ill, a low stretch nylon rope. Unbeknown to the caver, the rope is 
caught on a small projection at the top of the pitch. When he is 0.9 m from the top of the pitch the 
rope comes free from the projection and he falls 0.3 m vertically before the slack in the rope is 
taken up. The maximum force in this fall will be 570 kg. 

How did these forces arise? Why is the force in Situation B much greater than that for Situation 
A? 

Two factors interact to govern the maximum forces arising in a fall, they being 

(i) the fall factor, and 
(ii) the stretch factor. 
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Fall Factor 

The fall factor is the height of the fall divided by the length of the rope above the falling body. For 
a given rope, the greater the fall factor the higher the force in the rope. (An analytical proof of this 
hypothesis is given in Appendix B.) 

Consider the following example: 

Case 1: Caver falls 10 m on 30 m length. The fall factor is 10/30 = 1/3 . 
Case 2: Caver using same rope falls 2 m on 4 m length. The fall factor is 2/4 = 1/2; 

Case 2 will generate a greater force in the rope. 
However, if we look at our two situations we obtain 

15 = 1/3 Situation A: Fall Factor = 30 + 15 

Situation B: Fall Factor = 0.30; 0.9 = 1/4 

We would expect that Situation A would give the highest force, but we already know that it does 
not. Hence, there must be second factor affecting the forces arising in the rope. 

Stretch Factor 

The stretch factor can be stated as follows ~ for a given fall factor, the stretchier the rope, the lower 
the force. 

Consider the following example. 

Case 1. A 7.6 m fall on a 30 m rope length above the falling body. For a number 3 nylon, the 
maximum force will be 295 kg. 
Case 2. If the same fall occurs on Bluewater Ill, the maximum force will be 570 kg. 

The relevance of the stretch factor can be explained graphically. 
For any rope, we can obtain a load versus strain graph as shown in Fig. 31• The strain is a non
dimensional value obtained by dividing the extension of the rope by its length, i.e., it is the exten
sion of the rope per unit length. (The terms "load" and "force" are synonymous in this paper.) 

The hatched area under the curve is a measure of the energy stores in the rope per unit length, 
when it has a strain of x. 

In Fig. 4, the load versus strain curves for both number 3 nylon and Bluewater III have been 
plotted on the same axes. For the same fall factor on each rope the area under each curve must be 
the same. Hence, the Bluewater In rope must carry a higher force. 

The Failure Criterion 

The ultimate criterion for failure of every vertical caving system can be stated simply as follows: the 
system will fail when the energy input, (i.e., the energy of the falling caver) exceeds the capacity of 
the system to absorb energy. 

Using this criterion it can be shown that the breaking strain, (a misnomer, it should be called the 
ultimate tensile load) when quoted without supportive data is almost meaningless. 

A falling caver tied to a belay rope will have a certain energy (kinetic and potential) indicated by 
the square -hatched area in Fig. 5. If the caver is to be stopped by a rope, then virtually all of his 
energy must be converted to strain energy stored in the stretched rope. The maximum force in the 
rope will be reached when the energy of the falling caver is equal to the hatched area under the 
curve in Fig. 5. 

The total area under the curve when a rope is loaded to failure is the energy absorption capacity 
of the rope. Different ropes have different load versus deformation curves, and different energy 
absorption capacities. Consider two ropes with load versus deformation curves, as shown in Fig. 6. 
Rope A has a "breaking strain" approximately twice that of rope B. However, rope B has a greater 
energy absorption capacity than rope A and, hence is a safer rope. The "breaking strain", by itself, 
tells us little about a rope. What we really want to know is the energy absorption capacity. 
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The "breaking strain", by itself, tells us little about a rope. What we really want to know is the 
energy absorption capacity. 

Equipment Design 

Anyone who designs vertical equipment is shouldering a heavy responsibility. 
It is not intuitively obvious what the worst loading conditions are going to be. Sometimes, seem

ingly innocuous events can lead to a heavy load being placed upon an item of equipment. It is the 
duty of the designer to foresee what the maximum loads on his equipment might be and to design 
his gear to withstand these loads with an adequate safety factor. If the equipment cannot withstand 
certain types of loading with an adequate safety factor, then it is the designer's responsibility to 
ensure that these loading conditins can never be applied to the equipment. 

Experimental evaluation of equipment performance is not a simple matter. The strength of every 
item of equipment is approximately normally distributed as shown in Fig. 1. It is the responsibiity 
of the designer to develop, where possible, a testing procedure which will eliminate every item 
having less than the minimum safe strength. 

The development of proper testing procedure should be the province of a skilled technician. Too 
often I hear of testing procedures which consist of taking one or two specimens from a large batch, 
and testing them to destruction under one type of load, in conditions which barely duplicate the 
field conditions. Using this scanty data, sweeping claims are then made about the performance of 
the entire batch. This sort of procedure is far from adequate. 

A good procedure includes proper sampling techniques and multiple testing across a wide range 
of loading conditions, duplicating the field conditions as nearly as possible. Where relevant, mean 
values and standard deviations should be determined. 

These techniques are not quick, nor are they cheap. However, they are a rational method of 
attaining an acceptable level of safety when playing the risk game of vertical caving. 

APPENDIX A 

DERIVATION OF MAXIMUM FORCE ARISING IN A FALL 

It is possible to derive an equatioll for the IOTC(.'S arising in a rope when it is required to hold a 
falling: c.lver. 

Let W =: weight of caver 

L.:::: uncX1t.'ndcd length of the rope between tic-off point and (,;.lv~·r 

d:::o vertic.ll distance.: the elver falls he fore the slack in tht' rope is taken up (i.e., before the 
rope starts stretching) 

x = ex l('nsioll of lht' rope 

Xmax = In.lxinmm t'XICllsioll of the rope 

k ~ stillness of the Tope, which is defined as tht, lorce required to cause a unit cxtcn~ion or a 

length L of the ropc. Ikncc stiffness has units of forn·/dist.ulCt'. 

F =: the force in the rope 

Fmax = the maximum forcc in the rope 

The energy equation for ,I lallin~ cavcr is, 

Po1('ntial (.'nergy of = Strain elll'fgy stored in 
ClVer ,lbout to fall the ropl' at its point of maximum extensioll 

••••• 1 

Equation 1 ignorl's the small amounts of cnngy which an.: lost through heat, sound, ete. 

In the ,Ibselln' of any firm da!.l to the contrary, wc assume that rope obcys lIooke's Law, i,e., 

F ~ k.x ..... 2 

The strain l'lH:rgy stores in tht· ropt' undn l'Xh'IlSioll x is 

S.L = 'I, . F . x 

::::. Y:l. k. X2 

Using .IS datum tht: level tht' ("aVI,:r n:adws when x -= X maX , 

Eq. I can hl' {:xpn'\~t'd as 

Solving Eq. 4 Wt' oht.lin 

x - +.J~-----
m"x - W--~k-·2kW<L 

Suhstitutjllg ill E4. 2 

'·m"x = W + {W'-+2k\V"d 
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APPENDIX B 

PROOF OF THE FALL FACTOR HYPOTHESIS 
It can be proved, that, for a given rope, the maximum force in the rope is a function of the fall 

factor. 
Using the Notation of Appendix A, consider two lengths LI and L2 cut from the same rope. 

Under the action of a body weight, W, the extension for each rope will be 

XI = cLI 100 

x2 = cL2 100 

wherc c is the stretch of the rope expressed as a percentage of its length. 

The stiffness of each rope will be 

Rearranging 9 and 10 we have 

Hence for a given rope, kL is a constant. 

Equation 6 of Appendix A can be rewritten in-the form, 

..... 7 

..... 8 

..... 9 

..... 10 

..... 11 

F = W +Jw2 + 2(kL) . w . .!!. ..... 12 max L 

Terms W and kL are constant, hence Fmax is a function of (d/L) alone. The term d/L is the Fall 
Factor. 

APPENDIX C 

CALCULATION OF MAXIMUM FORCES 

SITUATION A 

Assume that number 3 nylon has approximately 5% stretch under a load of 70 kg. 

Using the notation of Appendix A: 

W = 70 kg 

d= 15 m 

k.:= 70/(45 x 0.05) = 31.1 kg/m 

F = W +JW2 + 2kWd max 

= 70 + (10 2 + 2 x 31.1 x 70 x 15) 

= 330 kg 

SITUATION B 

Assume that Bluewater III has approximately 1% stretch under a load of 70 kg. 

Hence 

W= 70 

d = 0.30 m 

k = 70/(l.21 x 0.01) = 5785 kg/m 

Fmax = 70 + /(70 2 + 2 x 5785 x 70 x 0.30) 

= 570 kg 
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