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Abstract 

The mathematics of a new least-squares procedure for cave survey loop closures 
is presented. Previously-published methods are briefly reviewed and it is 
suggested that the new method is superior, in both single- and multiple-loop 
situations. Brief description is given of a FORTRAN program for survey 
reduction incorporating this algorithm. 

INTRODUCTION 

The loop closure problem will be familiar to all cave surveyors. However 
careful we may be in making measurements, it is most unlikely that a survey 
station reachable by more than one path will be positioned unambiguously to 
within the plotting accuracy. Before the final plot is drawn it is therefore 
necessary to "adjust" the survey. 

Closed loops (with a good closure scheme) actually improve the positional 
accuracy of the survey in the same sense that the average of repeated measure­
ments of a single quantity is more reliable than one estimate. Of course, 
if the closure error is large we would not (or certainly should not) attempt 
to perform the closure - the data needs to be checked for such gross mistakes 
as reversed bearings, etc., and if all else fails a re-survey may be necessary. 

Methods in common use for resolving closures include simple adjustment by eye, 
and separate distribution of X, Y and Z errors in proportion to leg lengths. 
Ellis (1976) suggests distributing errors equally between legs since this is 
the simplest method and, he claims, as likely to produce reasonable results 
as any other. If there are several interconnected loops, however, the simple 
methods require that closures be adjusted sequentially. This has the disad­
vantage that the early closures may force errors onto the remaining loops 
over and above those due to mere measurement inaccuracies. Precisely for this 
reason, most surveyors choose to adjust the "best" closure first. 

The purpose of this paper is to show that the closure problem may be put on a 
firm mathematical basis. The problems attending sequential closure are 
avoided because the opportunity exists for adjusting any number of loops 
simultaneously. At least two papers (Schmidt & Schelleng, 1970; Luckwill, 
1970) have treated the simultaneous closure problem. I claim some superiority 
for the new method, for reasons to be discussed later. Many cave surveyors 
are already using computers for data reduction - why not get the most out of 
them? 

MATHEMATICS OF LOOP CLOSURE 

For simplicity, we consider at first a survey traverse of N legs forming a 
single closed loop. as shown in plan view in Fig. 1. The generalisation to 

* 52 Lurlin~ Street, MILE END, South Australia. 5031 

68 

Proceedings of 12th Conference of the ASF   1979



SMITH - SIMULTANEOUS MULTIPLE LOOP CLOSURES 

Figure 1. Example of uncorrected survey plot. 

North 

-- - ---

other situations is straight forward and is explained later. Due to un­
avoidable errors in the measurements, the last point does not coincide with 
the first; instead there is an error which in general has an easterly com­
ponent E , a northerly component E , and (although not shown in Fig. 1) a x y 
vertical component E. The values of the error components may be readily z 
calculated without plotting. Let us assume that for each leg we have measured 
the length L, the bearing B (clockwise from north, in degrees) and the slope 
or elevation S (in degrees, relative to the horizontal). 

Distinguishing between the legs by 
(Y) and vertical (Z) components of 

a subscript i, the easterly (X), northerly 
each lAg are given by straight forward 

trigonometry as: 

X. = L. sin B. cos S. 
). ). ). ). 

Y. = L. cos B. cos S. 
). ). ). ). 

z. = L. sin S. 
). ). ). 

Negative values indicate, of course, west, south or down. (More usual 
mathematical notation would employ r, e and ~, with the azimuth e being 
taken anticlockwise from east, and e and ~ would be measured in radians. 
However, the equations are just as readily derivable in terms of the "geo­
graphical" angles.) 

(1) 

(2) 

(3) 

Provided that all legs are taken in the same sense around the loop, the error 
components are simply the sums of the corresponding leg components, for 
example: 

E = x 

N 

L 
i=l 

L. sin B. cos S. (4) 
). ). ). 

Our aim in "adjusting" the survey is to introduce small changp.s 1., b. and s. 
).). ). 

to some or all of the L., B. and S. in such a way that the error components 
).). ). 
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are reduced to zero. The smaller the changes that are required, the more 
appealing the adjustment will be to the surveyor. The problem is mathemat­
ically tractable if we choose these adjustments in the way which minimises 
a "weighted least-squares objective function" F, defined as: 

N 

F = L ( 1 2 + W b 2 + W .s2. ) wl · . b' . • (5) 
i=l 1 1 1 1 Sl 1 

The w's are weighting factors which may be freely chosen to reflect the 
realities of the survey. For example, we may consider an error in bearing 
of 1° to be as likely as a 0.1 m error in length, and make wli = 100 wbi 
so that each would contribute equally to the value of F. The appearance 
of the subscript i implies that different weights may be given to different 
legs, a useful feature if some of the surveying was done accurately with (say) 
a miner's dial and some only with hand compasses. Some measurements may be 
considered "perfectly" accurate if desired - that is, some 1, b or s values 
may be defined as zero and simply omitted from equation (5). 

Considering now anyone leg (.~opping the subscript i), the increments 1, 
band s wi 11 inj-.... ad"(!e corresDondirg ch?'r\r'"~s }( ~ V and z to the ea~+i_"'Q". 

northing and height differences. Provided that the increments are small enough, 
approximate formulae for these changes may be obtained by partial different­
iation of equations (1), (2) and (3), that is 

ax 1 aX b aX x = + + ass aL aB • • • • (6) 

and similarly for y and z. Explicitly, 

x = 1 sin B cos S + brL cos B cos S srL sin B sin S (7) 

Y = 1 cos B cos S brL sin B cos S srL cos B sin S (8) 

z = 1 sin S + srL cos S (9) 

The factor r, equal to n/180, appears because band s are in degrees. 
Geometrical demonstrations of these formulae are possible, and illustrate that 
they are more accurate the smaller the increments. For length changes only 
(b = s = 0) the formulae are exact. 

To "close the loop" we want the net effect of the changes x, y and z sunnned 
around the loop to be equal and opposite to the original error components 
E ,E and E , while simultaneously making F as small as possible. That is, x y z 
we have an "equality constrained" optimisation problem, the three constraint 
equations being 

N 

L x. + E = 0 
i=l 1 x 

(10) 

N 

L y. + E = 0 
i=l 1 Y 

(11) 

N 

I z. + E = 0 
i=l 

J_ z 
(12) 
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To solve such a problem we define a "Lagrange function" G (see any general 
text on optimisation theory, for example, Gottfried & Weisman, 1973), involving 
the objective function F, the constraints, and one new variable p for each 
constraint, that is, 

G = F + x. J. + E ) 
x 

z. J. 

+ 

+ 

N 

Py(.I y i 
J.=l 

E ) 
z 

+ E 
Y 

) + 

The.sol~tion is ob~ained by simultaneously equating to zero the partial 
derJ.vatJ.ves of G wJ.th respect to all the variables (the original l's, b's 
and s's, and the pIS). Substituting- for F from equation (5) and for x., y. 

J. J. 

(13) 

and z. from J. equations (7), (8) and (9), and performing the differentiation, 
we get: 

dG 
0 2 wl.l. sin dl. = = + P B. cos S. + P cos B. cos S. + P sin S. 

J. J. J. X J. J. Y J. J. Z J. (14) 

dG 0 2 wb·b. + p rL. B. S. P rL. sin B. S. ab. = = cos cos cos J. J. X J. J. J. Y J. J. J. J. 
(IS) 

dG 0 2 rL. sin B. sin S. p rL. B. sin S. as. = = w .s. - Px cos + SJ. J. J. J. J. Y J. J. J. J. 

P rL. cos S. z 1 J. 
(16) 

The partial derivatives with respect to the p's yield the original constraint 
equations (10), (11) and (12). 

We thus have a set of 3N + 3 simultaneous linear equations to solve. This 
would certainly be an unpleasant task by hand calculator. At first sight it 
would seem to tax the capabilities of most computers also - if there were 100 
legs in the loop, over 90 000 memory locations would be needed just to store 
the matrix of coefficients. However, the situation is not as bad as that. The 
coefficient matrix is symmetric and (better still) is sparse. A set of very 
simple transformations reduce the problem to that of solving three simultaneous 
equa"tions, followed by a straightforward back-substitution to- produce the l's, 
b's and s's. In fact, hand caculation would be feasible for a single loop, even 
with 100 legs. 

Because the equations (7), (8) and (9) are not exact, this process does not 
solve the closure problem exactly, but will come extremely close. An exact 
closure (with a very slightly sub-optimal value of F) may be obtained by a 

second application of the process, this time allowing only leg lengths to vary 
(which they will do by rniniscule amounts). 

GENERALISATIONS 

So far we have considered a single survey loop, allowed changes in all the 
measured variables, and required the loop to close in all three dimensions. 
Very simple modifications take care of other situations. First, if we regard 
some measurements as much more reliable than others we can adjust the closure 
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Figure 2. Illustrating simultaneous loop closure. 
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Figure j. Example of Coefficient Matrix and R.H. Side 

This applies to the two-loop example of Fig. 2. 
x Denotes non-zero entry. 
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by varying only the latter - this leads to equations of the same form but 
fewer of them. Second, we may require closure in only one or two dimensions, 
for example, two stations may be spatially separated but both on the water 
table - there would be a z constraint (equation (12» but no x and y con­
straints; or an electromagnetic ("RDF") measurement may constrain a station 
in x and y but not in z. 

The generalisation to multiple loops is also straightforward and is illustrated 
in Fig. 2, where legs are numbered and stations identified by letters. Stations 
mA and mE are physically the same as station m. We still wish to minimise F as 
defined by equation (5), where the summation is over the entire survey and 
quite unrelated to the number of loops. Of course, if a leg forms part of no 
loop, we have no reason to adjust it at all, and so we do not include it. We 
now have six constraints because we wish to cancel simultaneously the errors 
E ,E ,E ,Ext' E band E b. A change to (say) leg 10 would have no effect xa ya za y z 
on the closure of "loop A" - thus the sUImnaticn in the constraint equations 
(10), (11) and (12) is not over the whole survey but only around the relevant 
loop. For example, one constraint would be: 

= o . . (17) 

Only legs 12, 13 and 14 are common to both loops and so appear In the equations 
for both E and Ext . xa 

As a further illustration, suppose that we know in addition that stations g and 
c are at the same level although the raw survey would place c 0.3 metre higher. 
We would then have 2 seventh constraint, namely, 

= o (18 ) 

(the minus signs occurring because we are looking at legs 6 and 7 in the 
reverse sense). Fig. 3 shows the coefficient matrix for this example. 
Simple transformations reduce the problem to the solution of seven 
simultaneous equations. If we were to consider instead of "loop A" and 
"loop B" just one of them and the entire exterior loop, the equations would 
look different, but the solution would be the same. 

COMPARISON WITH OTHER METHODS 

Schmidt & Schelleng (1970) have published a least-squares method for 
simultaneous closures. They minimise not the adjustments to lengths, bearings 
and slopes (the actual measurements made) but the changes to the Cartesian 
components (X, Y and Z) of the survey legs. The authors admit that they do 
not have the control they would like over bearings, for example, some of which 
can end up in the adjusted version to be uncomfortably different from their 
measured values. 

The methoQ requires the solution of k simultaneous equations (k = number of 
stations) for each coordinate, and the authors employ the idea of a "string" 
of legs to reduce the coefficient storage requirements. Luckwill (1970) 
describes (although not fully) what is potentially a better method, because it 
requires only one equation fer each loop. If weighting factors are introduced, 
Luckwill's method yields exactly the same results as Schmidt and Schelleng's 
but with much less effort - it solves a related "dual" probleD which is easier 
because there are always fewer loops than stations. 
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The principal advantage claimed for the method presented here is the explicit 
formulation in terms of the actual measured quantities - length, bearing and 
slope. During the adjustment process none of these values can wander further 
from their measured values than absolutely necessary. The small price to pay 
is some elementary trigonometry, and the solution of three equations for each 
loop (once) rather than one equation for each loop (three times). The 
computer is not worried. 

A COMPUTER PROGRAM 

A complete survey da~a reduction program has been written (in FORTRAN) 
incorporating the above. It has turned out to be quite long (23 pages of 
listing) not because of the mathematics but because of requirements for 
generality in entering data and in setting up the equations for all possible 
constraint and weight combinations. 

In summary, the first action of the pr~am isto read in the coordinates of 
any stations which were finalised on earlier runs, if any. New raw survey 
data is then entered in the form "station from", "station to", length, bearing, 
slope and instrument height. Alternatively, the program can accept stadia 
data or any mix of the two types. Compass and clinometer calibration data, 
etc., is entered on special cards and applies to all raw data following until 
overridden by a new value indicating, perhaps, a different instrument. An 
important feature is that stations reachable by multiple paths must be given 
more than one name (as with station m in Fig. 2). To the computer, then, 
there are no closed loops and no ambiguities in station positions, which are 
calculated and printed out to allow the surveyor to decide whether immediate 
closure is justified or whether the data needs re-assessment. 

The program then enters a "command" mode. Commands include equating stations 
to each other (that is,closing loops) in one, two, or three dimentions, and 
forcing station coordinates to assume certain values. There is no ambiguity 
in choosing the legs involved in the closure: to the program there are no loops 
and so only one path. It just "happens" that two "different" stations wind up 
with the same coordinates. The command structure allows closures to be all 
simultaneous, all sequential, or any intermediate combination. Another useful 
command produces a print-out of coordinates for a map at any scale. Plotting 
would be another possibility but has not been included at this stage. Commands 
may be stacked on the input file after the data, but if a remote terminal is 
available the user may enter them interactively. 

Copies of this program and a detailed set of instructions for "driving" it are 
available for the cost of posting the card deck. 
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